解:(1)lim(x->1)[4/(1-x^4)-3/(1-x³)]=lim(x->1){4/[(1-x)(1+x)(1+x²)]-3/[(1-x)(1+x+x²)]}
=lim(x->1){[4(1+x+x²)-3(1+x)(1+x²)]/[(1-x)(1+x)(1+x²)(1+x+x²)]}
=lim(x->1){(1+x+x²-3x³)/[(1-x)(1+x)(1+x²)(1+x+x²)]}
=lim(x->1){(1-x)(1+2x+3x²)/[(1-x)(1+x)(1+x²)(1+x+x²)]}
=lim(x->1){(1+2x+3x²)/[(1+x)(1+x²)(1+x+x²)]}
=(1+2+3)/[(1+1)(1+1)(1+1+1)]
=1/2;
(2)lim(x->∞)[x^7(1-2x)^8/(3x+2)^15]=lim(x->∞)[(1/x-2)^8/(3+2/x)^15]
=(0-2)^8/(3+0)^15
=2^8/3^15;
(3)lim(x->1){[(x^(n+1)-(n+1)x+n]/(x-1)²}=lim(x->1){[(n+1)x^n-(n+1)]/[2(x-1)]}
(0/0型极限,应用罗比达法则)
=lim(x->1){[n(n+1)x^(n-1)]/2}
(0/0型极限,再次应用罗比达法则)
=n(n+1)/2。
请看图片,有不懂的再补充吧……
n(n+1)/2.用两次洛必达法则
通分就行了
lim(x->1)(4/(1-x^4)-3/(1-x^3)) =lim(x->1)(3x^2+2x+1)/[(1+x+x^2)(1+x+x^2+x^3)]=1/2
lim(x->无穷大)(x^7(1-2x)^8/(3x+2)^15)=lim(x->无穷大)(x^7(1-2x)^8/[(3x+2)^7(3x+2)^8]
=lim(x->无穷大)((1/x-2)^8/[(3+2/x)^7(3+2/x)^8]=2^8/3^15