∫sinx/(sinx+1) dx =∫(sinx+1-1)/(sinx+1) dx =∫[1-1/(sinx+1)] dx =x-∫1/(sinx+1) dx =x-∫[1+tan^2(x/2)]/[1+tan^2(x/2)+2tan(x/2) ]dx =x-∫1/[1+tan(x/2)]^2dtan(x/2) =x+1/[1+tan(x/2)]+C